Construction of mouse phantoms from segmented CT scan data for radiation dosimetry studies.

نویسندگان

  • D Welch
  • A D Harken
  • G Randers-Pehrson
  • D J Brenner
چکیده

We present the complete construction methodology for an anatomically accurate mouse phantom made using materials which mimic the characteristics of tissue, lung, and bone for radiation dosimetry studies. Phantoms were constructed using 2 mm thick slices of tissue equivalent material which was precision machined to clear regions for insertion of lung and bone equivalent material where appropriate. Images obtained using a 3D computed tomography (CT) scan clearly indicate regions of tissue, lung, and bone that match their position within the original mouse CT scan. Additionally, radiographic films are used with the phantom to demonstrate dose mapping capabilities. The construction methodology presented here can be quickly and easily adapted to create a phantom of any specific small animal given a segmented CT scan of the animal. These physical phantoms are a useful tool to examine individual organ dose and dosimetry within mouse systems that are complicated by density inhomogeneity due to bone and lung regions.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Image-based versus atlas-based patient-specific S-value assessment for Samarium-153 EDTMP cancer palliative care: A short study

Introduction: Use of SPECT/CT data is the most accurate method for patient-specific internal dosimetry when isotopes emit single gamma rays. The manual or semi-automatic segmentation of organs is a major obstacle that slows down and limits the patient-specific dosimetry. Using digital phantoms that mimic patient’s anatomy can bypass the segmentation step and facilitate the dosi...

متن کامل

Individual virtual phantom reconstruction for organ dosimetry based on standard available phantoms

Background: In nuclear medicine application often it is required to use computational methods for evaluation of organ absorbed dose. Monte Carlo simulation and phantoms have been used in many works before. The shape, size and volume in organs are varied, and this variation will produce error in dose calculation if no correction is applied. Materials and Methods: A computational framewo...

متن کامل

A CVH-based computational female pelvic phantom for radiation dosimetry simulation

Background: Accurate voxel phantom is needed for dosimetric simulation in radiation therapy for malignant tumors in female pelvic region. However, most of the existing voxel phantoms are constructed on the basis of Caucasian or non-Chinese population. Materials and Methods: A computational framework for constructing female pelvic voxel phantom for radiation dosimetry was performed base...

متن کامل

Development of Prototype Iranian male pelvic phantom for internal dosimetry

Introduction: Existing phantoms have been constructed based on Caucasian, non-Caucasian and race-specific datasets. According to previous studies made efforts to present Korean- specific phantoms and Chinese female phantom based on CVH dataset due to compare the resulting internal dosimetry with the Caucasian based data showed possible racial difference in human anatomy between ...

متن کامل

Development of Computed Tomography Head and Body Phantom for Organ Dosimetry

Introduction: Quality assurance in Computed tomography (CT) centers in developing countries are largely hindered by the unavailability of CT phantoms. The development of a local CT phantom for the measurement of organ radiation absorbed dose is therefore requisite. Material and Methods: Local CT phantoms were designed to meet the standard criteria of 32 cm diameter for body, 16 cm diameter for...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Physics in medicine and biology

دوره 60 9  شماره 

صفحات  -

تاریخ انتشار 2015